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EXTREME RUNUP STATISTICS ON NATURAL BEACHES

Introduction

1. Although active research into the estimation of runup has been under

way for many years, comprehensive guidance presently does not exist for the

estimation of expected runup extremes on natural beaches. Holman (1986) used

extensive data collected at the Coastal Engineering Research Center's (CERC)

Field Research Facility (FRF) to formulate statistical relationships between

input wave parameters and extreme runup parameters. However, his analysis did

not address questions related to the selection of appropriate wave parameters,

nor did it consider data from sites other than the FRF. The objective of this

report will be to supplement FRF data with data from additional sites, to

examine consistency of wave data taken from different depths relative to the

prediction of runup, and to formulate a statistical framework for estimating

extreme runups during a storm.

Basic Physics of Wave Transformations Related to
Extreme Runup Prediction

2. The dynamics of waves approaching a coast, although verv complex, 1

have become better understood in the last few years. Much of this new under-

standing stems from the increased availability of high-quality wave measure-

ments in shallow water. Bouws et al. (1985) compiled and analyzed an exten-

sive data set which demonstrates that, even in shallow water, wave spectra

during storm conditions appear to maintain a predictable spectral shape.

Resio (1986a, 1986b) presented a theoretical argument which appears to explain

some of the reasons for this strong tendency toward an equilibrium form.

3. A primary question which relates to prediction of runup on a natural

beach (or on a structure, for that matter) is where should the wave informa-

tion be obtained in order to achieve the best prediction of runup phenomena. _|

Should it be taken from deep water, from outside the surf zone in shallow

water, or from inside the surf zone? Should wave parameters consider local

wave steepness or deep-water steepness? Holman (1986) does not address this

question but, rather, seems to imply that it really does not make too much

difference.

4 1



4. An examination of these questions begins by specifying relevant wave

parameters and runup parameters involved in actual prediction of runup on a

beach. If the analysis of Holman is followed, it can be seen that runup and

incident wave conditions can be linked by an equation (Hunt's equation) of the

form:

R tanB (1)
H 4

where

R = arbitrary runup parameter

H = arbitrary wave height parameter

a - beach slope angle (defined to be positive)

L - arbitrary wavelength parameter
A A

Figure I from Holman's paper shows a plot of R2 versus , where R2 is

defined as

A R2
R2  H (2)

m
0

where

R2 - runup only exceeded by 2 percent of all runups

H - zero-moment wave height
m

is defined as

tan B(3)

VH ILO
m 00

where L 0 deep-water wavelength associated with spectral peak frequency;0

i.e.

o 2 T2  (4)Lo 21r m

5 ki



where

g - acceleration due to gravity

T - spectral peak period

m4

3

2 2

ON@

1 2 3

A

Figure 1. Plot of R2 versus

(after Holman 1986)

In this figure, wave data represent wave heights and periods measured at

gage 625, which is located at the seaward end of the pier in about 7 m of

water. According to Holman, wave conditions at gage 625 are quite similar, at

least in a statistical context, to those at gage 620, which is located farther

offshore in about 17 m of water.

5. One might assume from Holman's presentation that the location of

wave data is not very important to the accurate prediction of wave runup on

natural beaches. Since wave height enters linearly on the left-hand side of

Equation 1 and inside a square root on the right-hand side, it is only

strictly possible for Holman's argument to hold if the wave height remains

constant from gage 620 to gage 625. Thus, Holman's comment that the data are

statistically similar suggests that, on the average, wave heights at gages 620

and 625 are fairly similar. Whereas this might on the average be true for

waves at gages 620 and 625, it may not be true in general for waves measured

at arbitrary locations (depths) from the shoreline. Also, it can be seen not

to be true for certain specific instances, even for gages 620 and 625. NO,
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Table I lists wave heights and periods for two selected time intervals covered

by Holman's data. During the first of these intervals, the waves are very

long (peak periods in excess of 16 sec) and wave heights at gage 620 are only

moderate (2.2 to 2.5 m). Therefore, the waves are not very steep (swell

waves), and wave shoaling appears to add more energy into the waves than is

removed by dissipative processes (nonlinear fluxes, wave breaking, bottom

friction, etc.). By the time these waves arrive at gage 625, wave heights are

in excess of 3 m. In the latter interval, wave periods are shorter (8.0 to

13.5 sec) and wave heights are large (-4 m) and very steep (storm waves). In

this case, dissipative processes remove more energy from the spectrum than is

added by shoaling, resulting in lower wave heights at gage 625. From examina-

tion of these two separate events, it seems that the wave transformation pro-

cess between gages 620 and 625 is sensitive to wave steepness. This is con-

sistent with the nonlinear flux theory advanced by Resio (1986a, 1986b).

6. In an effort at least to initiate some examination of the applica-

bility of various wave parameters from different offshore locations for use in

wave runup predictions, the following analyses were performed. First, an at-

tempt was made to isolate only those spectra believed likely to have one domi-

nant spectral peak. Since it is obvious that one peak period cannot provide a

realistic predictive parameter for multimodal spectra, this step should remove
A

some extraneous scatter from Holman's plots of R2 versus & . Having exam-

ined a wide range of spectra from the FRF site over the years, it was observed

that most strongly multimodal spectra were associated with low seas; there-

fore, as a first stratification level, all cases for which the wave height at

gage 620 was under I m were excluded. As a second level of stratification,

all cases in which the peak period changed by over 1.5 sec between gages 620

*and 625 were removed. After this processing was complete, computer plots were
A

generated of R2 versus , in which deep-water wavelength was used as the
horizontal length parameter. Figures 2-4 show results of the analysis of the

Holman data set based on wave conditions at gages 620, 625, and 615, respec-

tively. Plots for 620 and 625 are similar, in agreement with Holman's conclu-

sions. However, the plot based on data from gage 615 shows little agreement

with the others, nor is much of a general pattern in the relationship between

R2 and E evident in the analysis based on gage 615. This suggests that

data inside or very near the surf zone are probably not good predictors of

runup.

7
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Figure 4. Results of analysis of Holman data set

based on wave conditions at gage 615

7. One possible explanation of lack of agreement between runup data and

wave parameters at gage 615 lies In the very shallow depth at that site (about

1.5 m average depth). Tidal variations and local deposition and erosion

produce large variations in total depth. This variation is much larger

percentagewise than variations at gages 620 and 625.

8. Figures 5-7 show plots similar to Figures 2-4; however, this time

the local wavelength has been used as the horizontal length-scale parameter.

Comparisons between gages indicate that use of the local length scale appears

aA

to significantly reduce scatter in the relationship between R 2 and E for

all three gages.

9. One aspect of the plots based on local wavelength scaling is that

three points appear as outliers for the plot based on the gage 620 data (Fig-

ure 5), whereas these same three points do not appear as outliers In the plot

based on the gage 625 data. The same three outliers also can be seen in the

plot based on gage 620 using deep-water wavelength scaling. All three of

these points come from measurements at 1700 on 14 October. At that time the
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Figure 7. Results of analysis of Holman data set
based on wave conditions at gage 615 with the
local wavelength used as the horizontal length-

scale parameter

wave height at gage 620 was only 1.11 m and shoaled to a 1.47-m value at
A

gage 625. This increase in wave height at gage 625 reduces the value of R2

and the increase in wave height plus the reduction in wave length at gage 625

combines to increase the value of & at gage 625. These combined effects
A

bring these outliers more into line with the general pattern between R2 and

. Thus, it appears that waves at gage 625 using local wavelength scaling

provide the most consistent predictor of runup.

Statistical Estimation of Runup Extremes

10. Each individual runup is related to incident wave parameters such

as H and T in a probabilistic fashion. Consequently, the relationship
m m

between distribution of individual runups and incident wave parameters can be

written in a conditional probability statement much in the same way as the

II%



relationship between individual wave heights and statistical wave parameters

(such as mean wave height and significant wave height). Most of the analyzed

records cover only a time interval of about 20 min; consequently, maximum

runup is typically only about the same magnitude of the 1-percent wave height

for wave periods around 12 sec. This estimated runup cannot be regarded as

the maximum runup expected over an entire storm, which typically will have a

duration of 6 to 48 hr. Since the expected largest single runup during a

storm can be an important design consideration in locating and designing cer-

tain structures in coastal environments, a methodology will be developed here

to provide the framework for a reasonable estimate of this parameter.

II. Over the course of a single storm, storm surge, wave setup, and as-

tronomical tide all can contribute to time-varying changes in location of the

base level for the runup process. Also, incident wave heights, wave periods,

wave directions, and possibly beach slope vary throughout the storm. Since

all these factors enter into estimation of runup elevations, it is not always

clear, a priori, which conditions will produce the maximum potential for

runup. One could introduce arbitrary factors and conservatism into runup es-

timates by attempting to select a constant set of wave, water-level, and beach

parameters for a fixed duration supposedly equivalent to the expected runup

produced by actual time-histories of the processes. However, it is possible

to derive a more precise estimate by an appropriate convolution integral over

the entire storm.

12. As stated previously, for a set of fixed conditions, the cumulative

frequency distribution F of individual runups can be written in terms of a

conditional probability, i.e.

F t(R i) Ft(RiJE) PW (5)

where

= a vector consisting of all parameters influencing the statistical
properties of runup

p = probability density function

t = estimate for conditions at a particular time

For a reasonably complete set of these parameters one might take

12



e = (H , T, e, n, (6)

where

= mean wave direction at the location where Hm and T are
obtained m

n= mean water level (MWL) (MWL + tide + surge + setup)

If a nonexceedance probability P t(RR ) Is defined as

P C R ) F t (R ) (7)

then over two time intervals with approximately constant conditions within

each (but possibly with differences in C between the two times) one has

Pt x t 2 (Ri) = t (R)xP t 2 (Ri ) (8)

or in general over any arbitrary number of time increments one has

n

Pe(R) = H P k(R1 ) (9)
e k=1 k

where the subscript e denotes that the nonexceedance probability is for an

entire event.

13. Following the procedure derived by Borgman (1973) for maximum wave

heights, one can now write an integral for the expected largest runup over the

entire storm as

tk

FeCR ) = 1 - exp f n [Pt(Ri)] (10)

where T = mean period of runups. Equation 10 can be used in a discretized

form in a numerical integration scheme over a storm, i.e.

13



F(R 1 ) = 1- exp Ftk(R )Atk k=1 kn- (

where At IT = number of runups in the kth time increment. Equation 11 pro-

vides a convenient form to incorporate as many of the parameters in Equation 5

as desired into tl.e estimation of expected largest runup over the storm.

Also, in a rather straightforward application, the methodology described here

can be used in a general way to estimate the largest n runups (i.e. largest

two runups, three runups, etc.), which might also influence design and plan-

ning considerations.

14. Viewing Equation 11, it becomes evident that accurate estimation of

the cumulative distribution function is of central importance to determination

of extreme runups. Some past methodologies have fit the entire runup distri-

bution to certain theoretical forms such as the Weibull distribution. Whereas

this is a good technique for characterization of general runup patterns, it

does not necessarily ensure a good fit to the "tail" of the distribution which

controls extreme runups. Consequently, It is recommended that asymptotic

methods be used. In particular, the so-called generalized extreme value (GEV)

method is seen as capable of providing good estimates of expected sample

extremes.

15. It has been shown (Fisher and Tippett 1928) that if one excludes

certain improper distributions, there are only three asymptotic limiting forms

for extremal distributions. These are given by

I *(x) = exp [-exp (-x)] for - < x !5
k'%

II (x) - exp [-(c/x) I for x 0
=0 for x < 0

III ¢(x) 1 k' for x w
exp [-c(w - x) I for x < w

where

x = generalized variant

co k', w = parameters of asymptotic extreme-value distributors in orig-
Inal forms due to Fisher and Tippett (1928)

Jenkinson (1955) showed that all three asymptotic distributions could be writ-

ten In a common form

14



x + - e ky) (12)

where x , a , y , and k = parameters of Jenkinson's (1969) form of the

GEV distribution. For k = 0 , Equation 12 simplifies to asymptote I (often

called the Gumbel or Fisher-Tippett Type I distribution):

x = x0 + ay (13)

For asymptote II (often called a Frechet or Flsher-Tippett Type II distribu-

tion), k is negative; and for asymptote III (often called a Weibull or

Fisher-Tippett Type III distribution), k is positive. Figure 8 gives a

schematic representation of the three asymptotes in this context.

X X
5 B 5 TYPE M k = 0.3

TYPE I k =0 0UPPER X = + 1

4- 4 3
3- 3 LIMIT---- -

2 . 2 C

1 1

i . 4 .. .YI I v' I I I I ,g Y

-2 - . 1 2 3 4 5 2 1 2 3 4 5

-2 1-2

C'

X
12 . A

TYPE 'H k =-0.3
10

THE SCALE OF X IS IN UNITS
S OF THE PARAMETER Ot TAKING

X0 AS ORIGIN. Ck IS THE
6 SLOPE OF THE X-Y CURVE

4.. ~ AT Y - 0. WHERE X - X

2 G

-2 1 2 3 4 5

A' -2

LOWER X=X o -- a

LIMIT

Figure 8. Schematic representation of the
three Fisher-Tippett asymptotic distribu-

tions on X-Y diagrams (Jenkinson 1969)
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16. Given values of x , a , and k in Jenkinson's equation, a para-0
metric relationship between the value x and return period is obtainable as

+ -ky

x = x +--- ye (14)
o k k

where y is given as a function of return period by

=-in in(15)

for y > 10 ; this is close to y = in (T - 1/2) . For the case of k = 0

the equation for x simplifies to x x + cy . In the context here, this

equation linking x and T will be referred to as the GEV parametric

equation.

17. In the context of the GEV parametric equation, it is apparent that,

for the Fisher-Tippett Type III distribution, x + a/k provides an explicit

representation of the asymptotic upper bound for the distribution. In certain

processes, this information can be very useful for design purposes.

18. It is important to note that the total methodology outlined in this

section can provide a good objective estimate of expected extreme runups.

Thus, to a certain extent, it gives a framework for research needs since it

shows which functional relationships and statistical relationships must be

evaluated before the entire problem can be regarded as reasonably solved.

New Data Sets

19. As part of this study, runup data from two new sites were analyzed.

These data come from a field study in the San Francisco Bay area by Carlson

(1984). Figure 9 shows the two sites involved in this study: Alameda Beach

and Coyote Point. Details in the experimental setup can be found in Carlson

(1984). Basically, data available for analysis consist of one incident wave

height time series and corresponding runup time series at Alameda Beach and

one Incident time series of waves (sampled at four locations along a transect

normal to shore) with four corresponding runup time series (taken from four

different transects through the swash zone).

16
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S.F. ALAMEDA

.~COYOTE... BAY
-- POINT

FFIELD SITE

ALAMED BEAC

Figure 9. Maps showing locations of Alameda Beach and Coyote Point
field sites (after Carlson 1984)
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20. In Carlson's experiments waves are most likely locally generated

since no oceanic swell can arrive at these sites. Since wind speeds in the

experiments are relatively low, incident waves, wave periods, and runups are

considerably smaller than those observed at the FRF site. Consequently,

analysis of these data should provide a good check on general scaling rela-

tionships evident in Figures 1-7.

Analysis of Available Data

Analysis of R2 and R2

21. Analysis of runup extremes from Carlson's experiments began by

determining individual runups by an upcrossing method. For each time series,

the largest 15 runups, defined as an excursion distance from trough to crest

HR and also as the maximum distance traveled up the beach R , were measured.

In the context used here all variables are measured around the mean water

level, rather than from some fixed datum.

22. Incident wave height parameters and beach slopes are taken directly
A

from Carlson (1984) and are listed along with estimates of R, R2 , and

in Table 2. As was seen in the earlier analysis of Holman runup data relative

to wave measurements from different offshore locations, possibly the worst

predictions of runup are given by waves inside the surf zone. Carlson, in his

discussion of incident wave conditions at Coyote Point, indicated that the two

innermost gages in his experiment were in a region where a substantial number

of waves were breaking by plunging; therefore, the outermost gage will be used

here to characterize incident wave conditions. Given its proximity to the

surf zone, this outermost gage is likely to be reasonably consistent with wave

conditions measured at gage 625 in the experiment at the FRF site.

23. Figure 10 shows data taken from the Carlson experiments plotted

against the background of Figure 3. As can be seen there, data from these two

additional sites appear to fit the same pattern as data from the FRF site.
A

This suggests the scaling relationship between R2 and & is probably appli-

cable to most natural (sand) beaches.
A

Analysis of F(R)
A

24. Although R2 and R2 are useful parameters that provide a consis-

tent measure of extreme runups, as was concluded earlier, a complete estima-

tion methodology for extreme runup must Involve the cumulative distribution

18
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Figure 1. Data taken from the Carlson experim ets

plotted against the background of Figure 3, .

gage 625

AU

function of runups F (R) . This section shall attempt to derive a functional

relationshp between R and F(R) , based on selected data from olman (1986)

and Carlson (1984).

25. In order to obtain a consistent measure for F R) in the tail of

the population, a subsample of 32 time series from the Holman 
data was se- 0

lected and the 15 largest runups in each series were determined. Using the

UA

plotting position due to Gumbel, estimates for F(R) can be given for each

U.e.

runup series by 
,e

0 1 (16)

wherephf

i - rank of the runup value (largest , second largest a2, etc.)

m e total number of runups, determined from an upcrosslng method(186

19

25. n oderto btan a onsstet masue fo F() i th tal o



A
Since a functional relationship between R and & is expected to exist, a

more consistent form for the cumulative distribution function should be ob-
A

tained in terms of a new parameter R' given by

A

=R (17)

where & Is defined in terms of the local wavelength.

26. Since we are primarily interested in extremes, let us define nonen-

counter probability for given runups as

A A
N(R') = 1 - F(R') (18)

A A
Figure 11 shows a plot of log1 0 N(R') versus R' , which indicates that

A

indeed the behavior of N(R') is quite structured for the 32 selected data

points. In this figure the base 10 logarithm is used to provide a better dis-

play of behavior of the extremes. Two heavy lines In addition to the samples
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Figure 11. Sample of 15 largest runups for
32 selected cases from Holman
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are shown in Figure 11. The first (marked I) represents an estimate of the

mean of all data, and the second (marked II) represents a data envelope. Re-

turning to the GEV equation, the two lines were found to be well represented

by Equation 14, with the only significant difference being in the value of

x . This difference in x represents a simple additive shift between enve-0o o

lope and mean value. Based on both analyses, the values of a and k for

both curves are 0.20 and 0.19, respectively. The value for x in curve I

was found to be 0.20; whereas for curve II, x was estimated to be 0.47.0

27. Returning to Equation 12, the equation for the expected extremal

estimation for a given runup can be written as

0.2 + 1 - exp (-0.19y)](9
R' = 0.20 + 0.20 1 - x0 . 19- " 9 )  (19)

'I

where y is given in terms of Equation 14. In the context here, the recur-

rence interval T is given in terms of numbers of waves. Using the defini-

tion of T as

T= I F(x) = x (20) '

any value of N(x) can be substituted to obtain a corresponding value of
A 4

R' . Figure 12 gives a graphical example of the curves for the mean and enve-

lope extrapolated out to values of N(x) = 1/10,000 . For a 10-sec wave pe-

riod, this would correspond to a duration of over 24 hr, which should provide

a sufficient range for selection of a design value.

28. Once a design value for N(x) is selected, Equation 17 or Fig- %,

ure 12 can be used to obtain actual dimensional estimates of expected runups.

For example, for a 3-hr interval of high waves with a mean period of 10 sec,

the expected largest wave would have a value of N(x) of approximately
A

1/1,000. From Figure 12, it can be seen that R' is therefore equal to

0.976. This can be converted into a dimensional estimate by recalling the
A

definition of R' . Thus, this case would have

1/2%
R = 0.976a(HL) (21)

29. For the Carlson data, a similar analysis to that described above
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Figure 12. Plot of extremal distribution for
expected runups

was also completed. Figure 13 shows a plot of Alameda Beach data, and Fig-

ure 14 shows a plot of Coyote Point data. As can be seen in a comparison

between these plots and Figure II, once again the behavior of runup on these

beaches follows the same general pattern as that observed at the FRF site.

Estimation of x a , and k parameters for the GEV analysis indicates
0

parameter values for the FRF data set can also give a reasonable approximation
A

to the estimates of F(R') from Carlson's runup data at Coyote Point. How-

ever, the data from Alameda appear somewhat inconsistent with the rest of the

runup data. It is possible that the stake at which incident waves were mea-

sured for Alameda was inside the breaker zone, and therefore the wave data are

spurious in a manner similar to that of gage 615 at the FRF site in terms of

their relation to runup. For wave data outside of the immediate surf zone,

(Athe equations for F(R') can probably be regarded as a good first approxima-

tion to the actual cumulative distribution function.

Conclusions and Recommendations

30. This report had three primary objectives as noted in the
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Introduction. The first of these was to supplement the extensive runup data

set for natural beaches taken at CERC's FRF. Secondly, a review of available

data sets was to be made in order to examine consistency, in terms of runup

prediction, of wave measurements from different depths. Finally, a statis-

tical framework for estimating extreme runups during storms was to be

formulated.

31. Relative to the first objective, data from runup measurements at

two beaches in the San Francisco Bay were analyzed in a manner consistent with

the FRF data set. Data from these additional sites fit quite well into the

same empirical framework as the FRF data. These results suggest that rela-

tionships between wave and runup parameters based on the FRF data are also

valid for other natural beaches.

32. In order to examine consistency of wave data from different depths

relative to predictability of runup, FRF runup data were plotted against surf

similarity parameters based on incident wave conditions measured at gages 620,

625, and 615, located in mean depths of about 17, 8, and 2 m, respectively.

These plots showed the best predictor of runup was available using data from

gage 625 scaled by local wavelength, rather than deep-water wavelength. Re-

sults for gage 615 showed a large amount of erratic scatter, which suggests

that measurements too close to shore (littoral environmental observations) are

not particularly good predictors of runup. Results for gage 620 were rela-

tively well organized, but contained some outliers which were not apparent in

the results for gage 625. This suggests that wave measurements should be

taken at a consistent depth for future runup experiments. Additional analyses

should be aimed at contributing toward a better understanding of the physics

of wave transformations and runup in order to increase the ability to predict

runup from arbitrary wave data sets.

33. Finally, it has been shown that factors contributing to prediction

of wave runup can be incorporated into a coherent statistical framework.

Within this framework, the cumulative distribution function and nonexceedance

probability play major roles in estimating expected extreme runups over a

fixed interval with constant incident wave and water-level conditions or over

an entire storm with variable wave conditions and water levels. As shown in

Figure 12, the estimation procedure for idealized, constant conditions can be

simplified to a graphical method.

24
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Table I

Wave Heights and Periods for Two Selected Time Intervals

Covered by Holman's Data

Gage 620 Gage 625
Wave Height Wave Period Wave Height Wave Period

Date* m sec m sec

82101214 2.36 16.20 3.11 16.34
82101214 2.36 16.20 3.11 16.34
82101214 2.36 16.20 3.11 16.34 p.

82101214 2.36 16.20 3.11 16.34
82101215 2.26 15.10 3.12 16.52
82101215 2.26 15.10 3.12 16.52
82101215 2.26 15.10 3.12 16.52
82101217 2.39 16.50 3.13 16.61
82101217 2.39 16.50 3.13 16.61
82101217 2.39 16.50 3.13 16.61
82101217 2.39 16.50 3.13 16.61 -y
82101218 2.45 16.30 3.13 16.70
82101218 2.45 16.30 3.13 16.70
82101218 2.45 16.30 3.13 16.70

82102413 3.51 8.10 3.44 8.90
82102413 3.51 8.10 3.44 8.90
82102415 3.75 9.60 3.37 9.52
82102509 4.05 13.80 3.33 13.53
82102509 4.05 13.80 3.33 13.53

82102512 3.65 13.30 3.19 13.35
82102512 3.65 13.30 3.19 13.35

T

* This column is read: year, month, day, hour (on a 24-hr clock).



Table 2

Runup Parameters for Alameda Beach

and Coyote Point Experiments*

A

Location Hs m Tan R2 R2

Alameda Beach 0.14 2.4 0.11 0.165 1.17 0.88

Coyote Point #3 0.28 2.4 0.08 0.091 0.33 0.45

Coyote Point #4 0.28 2.4 0.08 0.092 0.34 0.45

Coyote Point #5 0.28 2.4 0.08 0.104 0.37 0.45

Coyote Point #6 0.28 2.4 0.08 0.103 0.36 0.45

ell

I

* H = Significant wave height, in metres
s

T = Wave period of spectral peak, in seconds
M

tan -= Beach slope

R 2= 2-percent runuip, in metres
A

R= Normalized 2-perc:ent runup

2t

= riba-rren parameter
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